organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-(2-isopropyl-2*H*-tetrazol-5-yl)phenyl]dimethylsilane

Peng Wang, Zheng Yue, Jie Zhang and Sheng-Yu Feng*

School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu Road, Jinan, People's Republic of China Correspondence e-mail: fsy@sdu.edu.cn

Received 8 December 2010; accepted 5 January 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.088; wR factor = 0.207; data-to-parameter ratio = 18.1.

The title compound, $C_{22}H_{28}N_8Si$, has crystallographic 2 symmetry with the Si atom located on a twofold rotation axis. The tetrazole ring is oriented at a dihedral angle of 5.32 (18)° with respect to the benzene ring. A C-H··· π interaction occurs between adjacent molecules in the crystal structure.

Related literature

For applications of tetrazole compounds, see: Bhandari *et al.* (2000). For the synthesis of tetrazole derivatives, see: Demko & Sharpless (2001).

Experimental

a = 7.2722 (14) Å

Crystal data	
$C_{22}H_{28}N_8Si$	
$M_r = 432.61$	
Orthorhombic, Pbcn	

```
b = 11.536 (2) \text{ Å}
c = 28.444 (6) \text{ Å}
V = 2386.2 (8) \text{ Å}^3
Z = 4
```

Мо	Κα	radiat	ion
$\mu =$	0.12	2 mm ⁻	-1

Data collection

Bruker SMART CCD area-detector	12923 measured reflections
diffractometer	2613 independent reflections
Absorption correction: multi-scan	1827 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.049$
$T_{\rm min} = 0.945, T_{\rm max} = 0.991$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.088$ 144 parameters $wR(F^2) = 0.207$ H-atom parameters constrainedS = 1.14 $\Delta \rho_{max} = 0.32$ e Å⁻³2613 reflections $\Delta \rho_{min} = -0.19$ e Å⁻³

T = 298 K

 $0.46 \times 0.37 \times 0.07 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the tetrazole ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9B\cdots Cg^{i}$	0.96	2.86	3.738 (5)	152

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Testing Centre of Shandong Normal University for the diffraction measurements and are grateful for financial support from the National Natural Science Foundation of China (No. 20874057) and the Key Natural Science Foundation of Shandong Province of China (No. Z2007B02).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5118).

References

Bhandari, S., Mahon, M. F., Molloy, K. C., Palmer, J. S. & Sayers, S. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1053–1060.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o368 [doi:10.1107/S160053681100033X]

Bis[4-(2-isopropyl-2H-tetrazol-5-yl)phenyl]dimethylsilane

P. Wang, Z. Yue, J. Zhang and S.-Y. Feng

Comment

Due to the application of tetrazoles in coordination chemistry, medicinal chemistry and material science (Bhandari *et al.*, 2000), series of organic compounds with tetrazole group have been synthesized through different methods. Since a safe, convenient and envrironmentally friendly procedure for the synthesis of 5-substituted 1*H*-tetrazoles in water was reported by Demko and Sharpless (2001), synthesis of such compounds has been developed rapidly. However, due to the difficult in synthesis, tetrazole functional silane was never reported to our best knowledge. Here, we reported the synthesis and crystal structure of the title compound(I), namely, bis(4-(2-isopropyl-2*H*-tetrazol- 5-yl)phenyl)dimethylsilane.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The phenyl and tetrazole rings are not coplanar, and the two rings twisted to each other at a dihedral angle of 5.32 (18)°. The crystal packing is stablized by C—H··· π interaction (Table 1).

Experimental

Tert-butyl lithium (4 mmol) in 3.08 ml n-pentane solution and 5-(4-bromophenyl)-2-isopropyl-2*H*-tetrazole (0.54 g, 2 mmol) were reacted at 195 K in 20 ml e ther. To the resulted solution was added dimethyldichlorosilane (0.13 g, 1 mmol), the solution was warmed slowly to room temperature and stirred overnight. Then the solution was filtered. The volatiles were removed from the resulting filtrate by vacuum distillation. The residue was purified by column chromatography using ethyl acetate/n-hexane as eluent to afford the pure compound. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation methanol solvent.

Refinement

The H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}(C)$ for the others.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.

Bis[4-(2-isopropyl-2H-tetrazol-5-yl)phenyl]dimethylsilane

Crystal data

C₂₂H₂₈N₈Si $M_r = 432.61$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 7.2722 (14) Å b = 11.536 (2) Å c = 28.444 (6) Å V = 2386.2 (8) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2613 independent reflections
Radiation source: fine-focus sealed tube	1827 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.049$
ϕ and ω scans	$\theta_{\text{max}} = 27.0^\circ, \ \theta_{\text{min}} = 1.4^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -9 \rightarrow 9$
$T_{\min} = 0.945, T_{\max} = 0.991$	$k = -14 \rightarrow 10$
12923 measured reflections	<i>l</i> = −36→36

F(000) = 920

 $\theta = 2.9 - 20.6^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Plate, colourless

 $0.46 \times 0.37 \times 0.07 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.204 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1662 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.088$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.207$	H-atom parameters constrained
<i>S</i> = 1.14	$w = 1/[\sigma^2(F_o^2) + (0.0693P)^2 + 1.6746P]$ where $P = (F_o^2 + 2F_c^2)/3$
2613 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
144 parameters	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Si1	0.0000	0.80602 (11)	0.2500	0.0536 (4)
N1	0.5087 (4)	0.4553 (2)	0.40351 (9)	0.0610 (8)
N2	0.5050 (4)	0.3688 (2)	0.43454 (10)	0.0634 (8)
N3	0.3420 (5)	0.3270 (3)	0.44279 (12)	0.0804 (10)
N4	0.2291 (4)	0.3870 (3)	0.41648 (11)	0.0748 (9)
C1	0.1069 (4)	0.7079 (3)	0.29478 (10)	0.0473 (7)
C2	0.2904 (5)	0.7098 (3)	0.30746 (12)	0.0600 (9)
H2	0.3668	0.7655	0.2942	0.072*
C3	0.3639 (5)	0.6321 (3)	0.33902 (12)	0.0604 (9)
Н3	0.4883	0.6361	0.3465	0.072*
C4	0.2560 (4)	0.5490 (3)	0.35956 (10)	0.0489 (8)
C5	0.0720 (5)	0.5455 (3)	0.34793 (12)	0.0679 (10)
Н5	-0.0042	0.4903	0.3617	0.082*
C6	0.0004 (5)	0.6231 (3)	0.31617 (12)	0.0663 (10)
Н6	-0.1239	0.6186	0.3087	0.080*
C7	0.3320 (5)	0.4640 (3)	0.39285 (10)	0.0512 (8)
C8	0.6736 (6)	0.3243 (3)	0.45759 (14)	0.0759 (11)
H8	0.6317	0.2726	0.4828	0.091*
C9	0.7768 (6)	0.4185 (4)	0.48099 (16)	0.0952 (15)
H9A	0.8732	0.3859	0.4999	0.143*
H9B	0.6949	0.4622	0.5007	0.143*
Н9С	0.8292	0.4687	0.4576	0.143*
C10	0.7788 (6)	0.2512 (4)	0.42484 (17)	0.1005 (15)
H10A	0.6997	0.1925	0.4120	0.151*
H10B	0.8788	0.2151	0.4413	0.151*
H10C	0.8264	0.2982	0.3998	0.151*
C11	0.1814 (6)	0.8966 (3)	0.22270 (15)	0.0823 (13)
H11A	0.2715	0.8474	0.2082	0.123*
H11B	0.2394	0.9431	0.2464	0.123*
H11C	0.1273	0.9461	0.1994	0.123*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0603 (8)	0.0454 (7)	0.0552 (7)	0.000	-0.0171 (6)	0.000
N1	0.0659 (18)	0.0600 (18)	0.0569 (16)	0.0010 (15)	-0.0129 (14)	0.0044 (14)
N2	0.081 (2)	0.0553 (17)	0.0538 (16)	0.0102 (16)	-0.0108 (16)	0.0096 (13)
N3	0.084 (2)	0.080 (2)	0.078 (2)	-0.009 (2)	-0.0036 (19)	0.0279 (18)
N4	0.073 (2)	0.080 (2)	0.071 (2)	-0.0060 (17)	-0.0105 (17)	0.0253 (18)
C1	0.0533 (18)	0.0454 (17)	0.0431 (15)	-0.0011 (14)	-0.0056 (14)	-0.0048 (14)
C2	0.055 (2)	0.054 (2)	0.071 (2)	-0.0136 (16)	-0.0133 (17)	0.0106 (17)
C3	0.0481 (19)	0.063 (2)	0.070 (2)	-0.0021 (17)	-0.0174 (16)	0.0072 (18)
C4	0.0549 (18)	0.0506 (18)	0.0413 (15)	-0.0002 (14)	-0.0045 (14)	-0.0031 (14)
C5	0.058 (2)	0.079 (3)	0.066 (2)	-0.0155 (18)	-0.0068 (18)	0.021 (2)

supplementary materials

C6	0.0496 (19)	0.084 (3)	0.065 (2)	-0.0095 (19)	-0.0155 (17)	0.0157 (19)
C7	0.061 (2)	0.0526 (19)	0.0403 (15)	0.0018 (15)	-0.0083 (15)	-0.0028 (15)
C8	0.090 (3)	0.071 (3)	0.067 (2)	0.014 (2)	-0.018 (2)	0.012 (2)
С9	0.105 (3)	0.078 (3)	0.103 (3)	0.013 (3)	-0.047 (3)	-0.014 (3)
C10	0.089 (3)	0.094 (3)	0.119 (4)	0.026 (3)	-0.008 (3)	-0.022 (3)
C11	0.088 (3)	0.073 (3)	0.085 (3)	-0.024 (2)	-0.025 (2)	0.028 (2)
Geometric param	neters (Å, °)					
Si1—C11		1.853 (4)	C4—4	С7	1.471	(4)
Si1—C11 ⁱ		1.853 (4)	C5—	C6	1.374	(5)
$Si1-C1^{i}$		1.873 (3)	C5—	H5	0.930	0
Sil—Cl		1.873 (3)	C6—	H6	0.930	0
N1—C7		1.324 (4)	C8—4	C10	1.471	(6)
N1—N2		1.332 (4)	C8—4	C9	1.479	(5)
N2—N3		1.301 (4)	C8—1	H8	0.980	0
N2—C8		1.483 (4)	C9—1	H9A	0.960	0
N3—N4		1.309 (4)	C9—]	H9B	0.960	0
N4—C7		1.342 (4)	C9—1	Н9С	0.960	0
C1—C2		1.382 (4)	C10–	-H10A	0.960	0
C1—C6		1.388 (4)	C10–	-H10B	0.960	0
C2—C3		1.377 (4)	C10–	-H10C	0.960	0
С2—Н2		0.9300	C11–	-H11A	0.960	0
C3—C4		1.370 (4)	C11–	-H11B	0.960	0
С3—Н3		0.9300	C11–	-H11C	0.960	0
C4—C5		1.379 (4)				
C11—Si1—C11 ⁱ		111.4 (3)	C1—	С6—Н6	118.8	
C11—Si1—C1 ⁱ		110.56 (16)	N1—	C7—N4	112.1	(3)
C11 ⁱ —Si1—C1 ⁱ		109.28 (16)	N1—	С7—С4	124.2	2 (3)
C11—Si1—C1		109.28 (16)	N4—	С7—С4	123.6	6(3)
C11 ⁱ —Si1—C1		110.56 (16)	C10–	-C8C9	116.3	(4)
C1 ⁱ —Si1—C1		105.63 (19)	C10–	-C8-N2	110.4	(3)
C7—N1—N2		100.9 (3)	С9—	C8—N2	111.3	(3)
N3—N2—N1		114.6 (3)	C10–	-C8—H8	106.0	
N3—N2—C8		123.1 (3)	С9—	С8—Н8	106.0)
N1—N2—C8		122.4 (3)	N2—	С8—Н8	106.0)
N2—N3—N4		105.8 (3)	C8—4	С9—Н9А	109.5	
N3—N4—C7		106.6 (3)	C8—	С9—Н9В	109.5	
C2—C1—C6		115.8 (3)	H9A-	—С9—Н9В	109.5	
C2-C1-Si1		124.7 (2)	C8—	С9—Н9С	109.5	
C6—C1—Si1		119.5 (2)	H9A-	—С9—Н9С	109.5	
C3—C2—C1		122.4 (3)	H9B-	—С9—Н9С	109.5	
С3—С2—Н2		118.8	C8—4	C10—H10A	109.5	
C1—C2—H2		118.8	C8—4	C10—H10B	109.5	
C4—C3—C2		120.7 (3)	H10A	—С10—Н10В	109.5	
С4—С3—Н3		119.6	C8—4	C10—H10C	109.5	
С2—С3—Н3		119.6	H10A	—С10—Н10С	109.5	

C3—C4—C5	118.3 (3)	H10B-C10-H10C	109.5
C3—C4—C7	121.7 (3)	Si1—C11—H11A	109.5
C5—C4—C7	120.0 (3)	Si1—C11—H11B	109.5
C6—C5—C4	120.4 (3)	H11A—C11—H11B	109.5
С6—С5—Н5	119.8	Si1—C11—H11C	109.5
С4—С5—Н5	119.8	H11A—C11—H11C	109.5
C5—C6—C1	122.4 (3)	H11B-C11-H11C	109.5
С5—С6—Н6	118.8		
C7—N1—N2—N3	-0.1 (4)	C7—C4—C5—C6	-178.7 (3)
C7—N1—N2—C8	179.8 (3)	C4—C5—C6—C1	-0.5 (6)
N1—N2—N3—N4	0.0 (4)	C2-C1-C6-C5	-0.1 (5)
C8—N2—N3—N4	-180.0 (3)	Si1—C1—C6—C5	177.4 (3)
N2—N3—N4—C7	0.2 (4)	N2—N1—C7—N4	0.2 (4)
C11—Si1—C1—C2	4.3 (3)	N2-N1-C7-C4	179.4 (3)
C11 ⁱ —Si1—C1—C2	-118.6 (3)	N3—N4—C7—N1	-0.3 (4)
C1 ⁱ —Si1—C1—C2	123.2 (3)	N3—N4—C7—C4	-179.4 (3)
C11—Si1—C1—C6	-173.0 (3)	C3—C4—C7—N1	-4.4 (5)
C11 ⁱ —Si1—C1—C6	64.1 (3)	C5—C4—C7—N1	174.9 (3)
C1 ⁱ —Si1—C1—C6	-54.0 (2)	C3—C4—C7—N4	174.7 (3)
C6—C1—C2—C3	0.5 (5)	C5-C4-C7-N4	-6.0 (5)
Si1—C1—C2—C3	-176.9 (3)	N3—N2—C8—C10	103.6 (4)
C1—C2—C3—C4	-0.3 (5)	N1-N2-C8-C10	-76.3 (5)
C2—C3—C4—C5	-0.2 (5)	N3—N2—C8—C9	-125.6 (4)
C2—C3—C4—C7	179.1 (3)	N1—N2—C8—C9	54.4 (5)
C3—C4—C5—C6	0.6 (5)		
Symmetry codes: (i) $-x$, y , $-z+1/2$.			

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the tetrazole ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C9—H9B…Cg ⁱⁱ	0.96	2.86	3.738 (5)	152
Symmetry codes: (ii) $-x+1, -y+1, -z+1$.				

